Abstract

Unsaturated free fatty acids and adenosine operate two neuromodulatory systems with opposite effects on neuronal function. Here, we tested if fatty acids controlled inhibitory adenosine A1 receptors. Arachidonate (AA, 10 microM) decreased the Bmax of an A1 receptor agonist, (R)-[3H]phenylisopropyladenosine (PIA; from 812 to 267 fmol x mg(-1) protein), and antagonist, [3H]1,3-dipropyl-8-cyclopentylxanthine (DPCPX; from 994 to 311 fmol x mg(-1) protein) and decreased the Kd of [3H]PIA (from 1.20 to 0.57 nM) binding to brain membranes of young adult rats (2 months old), these effects being mimicked by other cis but not trans unsaturated or saturated fatty acids. AA (10 microM) increased the potency of the A1 receptor agonist, 2-chloroadenosine to inhibit hippocampal synaptic transmission in young adult rats (EC50 decreased from 337 to 237 nM), which may constitute a safety feedback mechanism to control AA-induced neurotoxicity. Upon aging, there were increased free fatty acid levels and a concomitant decreased density of A1 receptors. This was more marked in hippocampal nerve terminals of aged rats (24 months old) and may be the determinant factor contributing to the lower potency of 2-choloroadenosine in aged rats (EC50 = 955 nM), in spite of the decreased Kd of PIA binding upon aging. The effects of AA on A1 receptor binding were attenuated upon aging, AA being devoid of effects in aged rats. Accordingly, AA (10 microM) failed to modify the potency of 2-choloroadenosine in aged rats (EC50 = 997 nM). However, albumin, which quenches free fatty acids, increased A1 receptor density by 65% and 2-chloroadenosine potency (EC50 = 703 nM) in aged rats, suggesting that the increased fatty acids levels in aged rats may contribute to the decreased potency of A1 receptor agonists in aged rats. Also, the observed saturation of the control by AA of A1 receptors may contribute to the decreased adaptability of neuromodulation to different firing conditions in aged rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.