Abstract
The purpose of this study was to utilize in vivo magnetic resonance imaging (MRI) and optical modeling to investigate how changes in water transport, lens curvature, and gradient refractive index (GRIN) alter the power of the mouse lens as a function of age. Lenses of male C57BL/6 wild-type mice aged between 3 weeks and 12 months (N = 4 mice per age group) were imaged using a 7T MRI scanner. Measurements of lens shape and the distribution of T2 (water-bound protein ratios) and T1 (free water content) values were extracted from MRI images. T2 values were converted into the refractive index (n) using an age-corrected calibration equation to calculate the GRIN at different ages. GRIN maps and shape parameters were inputted into an optical model to determine ageing effects on lens power and spherical aberration. The mouse lens showed two growth phases. From 3 weeks to 3 months, T2 decreased, GRIN increased, and T1 decreased. This was accompanied by increased lens thickness, volume, and surface radii of curvatures. The refractive power of the lens also increased significantly, and a negative spherical aberration was developed and maintained. Between 6 and 12 months of age, all physiological, geometrical, and optical parameters remained constant, although the lens continued to grow. In the first 3 months, the mouse lens power increased as a result of changes in shape and in the GRIN, the latter driven by the decreased water content of the lens nucleus. Further research into the mechanisms regulating this decrease in mouse lens water could improve our understanding of how lens power changes during emmetropization in the developing human lens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.