Abstract
BackgroundBy comparing fibroblasts collected from animals at 5-months or 16-months of age we have previously found that the cultures from older animals produce much more IL-8 in response to lipopolysaccharide (LPS) stimulation. We now expand this finding by examining whole transcriptome differences in the LPS response between cultures from the same animals at different ages, and also investigate the contribution of DNA methylation to the epigenetic basis for the age-dependent increases in responsiveness.ResultsAge-dependent differences in IL-8 production by fibroblasts in response to LPS exposure for 24 h were abolished by pretreatment of cultures with a DNA demethylation agent, 5-aza-2′deoxycytidine (AZA). RNA-Seq analysis of fibroblasts collected from the same individuals at either 5 or 16 months of age and exposed in parallel to LPS for 0, 2, and 8 h revealed a robust response to LPS that was much greater in the cultures from older animals. Pro-inflammatory genes including IL-8, IL-6, TNF-α, and CCL20 (among many other immune associated genes), were more highly expressed (FDR < 0.05) in the 16-month old cultures following LPS exposure. Methylated CpG island recovery assay sequencing (MIRA-Seq) revealed numerous methylation peaks spread across the genome, combined with an overall hypomethylation of gene promoter regions, and a remarkable similarity, except for 20 regions along the genome, between the fibroblasts collected at the two ages from the same animals.ConclusionsThe fibroblast pro-inflammatory response to LPS increases dramatically from 5 to 16 months of age within individual animals. A better understanding of the mechanisms underlying this process could illuminate the physiological processes by which the innate immune response develops and possibly individual variation in innate immune response arises. In addition, although relatively unchanged by age, our data presents a general overview of the bovine fibroblast methylome as a guide for future studies in cattle epigenetics utilizing this cell type.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1223-z) contains supplementary material, which is available to authorized users.
Highlights
By comparing fibroblasts collected from animals at 5-months or 16-months of age we have previously found that the cultures from older animals produce much more IL-8 in response to lipopolysaccharide (LPS) stimulation
Environmental exposures have been linked to alteration in the innate immune response as well, with studies conducted on pregnant rats showing that prenatal exposure to LPS leads to a suppressed innate immune response in offspring when examined at 5 days post birth [3] or even
We have previously demonstrated an age-dependent increase in the immune response of bovine dermal fibroblasts [5], with cultures from collected the same individual at 16 versus 5 months of age showing an increase in IL-8 production in response to LPS
Summary
By comparing fibroblasts collected from animals at 5-months or 16-months of age we have previously found that the cultures from older animals produce much more IL-8 in response to lipopolysaccharide (LPS) stimulation. We expand this finding by examining whole transcriptome differences in the LPS response between cultures from the same animals at different ages, and investigate the contribution of DNA methylation to the epigenetic basis for the age-dependent increases in responsiveness. DNA-methylation of the TLR4 gene promoter has been linked to lower expression and diminished response to LPS in intestinal epithelial cells [1]. Environmental exposures have been linked to alteration in the innate immune response as well, with studies conducted on pregnant rats showing that prenatal exposure to LPS leads to a suppressed innate immune response in offspring when examined at 5 days post birth [3] or even
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.