Abstract

BackgroundPatient age is one of the most salient clinical indicators of risk from COVID-19. Age-specific distributions of known SARS-CoV-2 infections and COVID-19-related deaths are available for many regions. Less attention has been given to the age distributions of serious medical interventions administered to COVID-19 patients, which could reveal sources of potential pressure on the healthcare system should SARS-CoV-2 prevalence increase, and could inform mass vaccination strategies. The aim of this study is to quantify the relationship between COVID-19 patient age and serious outcomes of the disease, beyond fatalities alone.MethodsWe analysed 277,555 known SARS-CoV-2 infection records for Ontario, Canada, from 23 January 2020 to 16 February 2021 and estimated the age distributions of hospitalizations, Intensive Care Unit admissions, intubations, and ventilations. We quantified the probability of hospitalization given known SARS-CoV-2 infection, and of survival given COVID-19-related hospitalization.ResultsThe distribution of hospitalizations peaks with a wide plateau covering ages 60–90, whereas deaths are concentrated in ages 80+. The estimated probability of hospitalization given known infection reaches a maximum of 27.8% at age 80 (95% CI 26.0%–29.7%). The probability of survival given hospitalization is nearly 100% for adults younger than 40, but declines substantially after this age; for example, a hospitalized 54-year-old patient has a 91.7% chance of surviving COVID-19 (95% CI 88.3%–94.4%).ConclusionsOur study demonstrates a significant need for hospitalization in middle-aged individuals and young seniors. This need is not captured by the distribution of deaths, which is heavily concentrated in very old ages. The probability of survival given hospitalization for COVID-19 is lower than is generally perceived for patients over 40. If acute care capacity is exceeded due to an increase in COVID-19 prevalence, the distribution of deaths could expand toward younger ages. These results suggest that vaccine programs should aim to prevent infection not only in old seniors, but also in young seniors and middle-aged individuals, to protect them from serious illness and to limit stress on the healthcare system.

Highlights

  • Patient age is one of the most salient clinical indicators of risk from COVID-19

  • The virus, which can cause the development of Coronavirus Disease 2019 (COVID-19), has been detected in 223 of the 237 countries, territories, and areas recognized by the World Health Organization [2]

  • Many deaths have occurred in long-term care (LTC) facilities, which are independent of the hospital system [42], and have experienced significant outbreaks [42, 43] (Fig. 2c), necessitating considerable disease surveillance in very old age groups (Fig. 2d). (These LTC deaths may partially explain the observed decrease in the hospitalization probability after age 80, Fig. 4a.) Unlike the distribution of deaths (Fig. 3b), the broad age distributions of hospitalizations, Intensive Care Unit (ICU) admissions, intubation, and ventilation (Fig. 3a) reveal the potential pressure on the healthcare system from both middle-aged individuals and seniors

Read more

Summary

Introduction

Age-specific distributions of known SARS-CoV-2 infections and COVID-19-related deaths are available for many regions. Less attention has been given to the age distributions of serious medical interventions administered to COVID-19 patients, which could reveal sources of potential pressure on the healthcare system should SARS-CoV-2 prevalence increase, and could inform mass vaccination strategies. Different regions have seen varying degrees of success with their specific mitigation strategies. Other countries, including Canada, initially succeeded in controlling the spread of the virus, but went on to suffer a large second wave of infection amid reopening efforts [11, 12]. The Atlantic provinces of New Brunswick, Nova Scotia, and Prince Edward Island have been successful in controlling SARS-CoV-2 spread, with only small, occasional outbreaks that were rapidly contained [11, 13]. Larger, provinces, especially Ontario and Quebec, have struggled with critical periods of large and/or rapidly increasing known infection (KI) counts, responding with strict measures such as stay-at-home orders [14,15,16] and curfews [17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.