Abstract

Alterations in neurotransmitter systems of the basal ganglia have been postulated to contribute to the disruption of motor function and balance associated with aging. This study examined nigrostriatal (A9) and mesolimbic (A10) dopamine neurons for qualitative age-correlated changes using fluorescence histochemistry for catecholamines and immunocytochemical techniques for the catecholamine-synthesizing enzyme, tyrosine hydroxylase. Results from this study suggest that age-correlated morphological changes in A9 but not all A10 neurons in the midbrain are present in mature adult (10-month) C57BL/6NNia mice and show a progressive increase in severity until at least 30 months of age. These changes are characterized by a progressive accumulation of lipofuscin in dopamine-containing perikarya, a markedly reduced dopamine content per cell as determined visually by histofluorescence, and an increase in the number of large, fluorescent axonal dilations in dopamine-containing fibers of the mesolimbic and nigrostriatal systems. These data suggest that heterogeneous morphological aging patterns exist within dopamine-containing neurons of the midbrain and that based upon their terminal projection sites, various regions of the striatum and cortex may be differentially affected in the aged brain. In addition, these findings support the belief that age-related changes in neural structure are not generalized to an entire brain nucleus or cell type but are selective for individual cells within an affected area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call