Abstract

The paper presents data on the structure, composition, and age of granitoid associations (Tokhtogeshil’skii Complex) composing the Kharanur and Sharatologoi polychronous plutons in the northern part of the Ozernala zone in western Mongolia. The Tokhtogeshil’skii Complex was determined to consist of a number of independent magmatic associations, which were formed at 540–450 Ma, within three age intervals (540–520, 510–485, and 475–450 Ma), have different composition, were derived from different sources, and were emplaced in different geodynamic environments. During the first, island-arc stage (540–520 Ma), high-Al plagiogranites were produced, which belong to tonalite-plagiogranite (531 ± 10 Ma) and diorite (529 ±6 Ma) associations in the Kharanur pluton, low-Al plagiogranites of the tonalite-plagiogranite association (519 ± 8 Ma) in the Sharatologoi pluton, and rocks of the Khirgisnur peridotite-pyroxenite-gabbronorite complex (Kharachulu and Dzabkhan massifs). The rocks of the diorite and plagiogranite associations of the Kharanur pluton have ɛNd(T) from +7.9 to +7.4, TNd(DM) = 0.65 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039. The plagiogranites of the Sharatologoi pluton (tonalite-plagiogranite association) are characterized by ɛNd(T) from +6.5 to +6.6, TNd(DM) = 0.73–0.70 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039, which suggest predominantly juvenile subduction sources of the parental melts at a subordinate role of ancient crustal material. During the second, accretionary stage (510–485 Ma), low-Al plagiogranites of the diorite-tonalite-plagiogranite association of the Sharatologoi pluton (494 ± 10 Ma, M type) were formed. The Sr-Nd isotopic characteristics of these rocks ɛNd(T) = +6.6, (87Sr/86Sr)0 = 0.7039 are analogous to those of the plagiogranitoids of the early type. This suggests that the melted sources were similar in composition. During the third, postcollisional stage (475–450 Ma), rocks of the diorite-granodiorite-granite association were formed (459 ± 10 Ma, type I) in the Kharanur pluton. These rocks have ɛNd(T) = +5.1, TNd(DM) = 0.74 Ga, and (87Sr/86Sr)0 = 0.7096. The parental melts were supposedly derived by means of partial melting of “the Caledonian” juvenile crust with the addition of more ancient crustal material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.