Abstract

BackgroundAging is a complex physiological phenomenon, intricately associated with cardiovascular pathologies, where platelets play a central pathophysiological role. Although antiplatelets are commonly employed to prevent and treat major adverse cardiovascular events, aging associated intraplatelet changes remain largely unexplored. MethodsPlatelets were studied in high cardiovascular risk patients (aged 40–100 years) comparing them to younger healthy subjects. This was followed by cross sectional and longitudinal mice studies. Flow cytometry, biochemical and molecular assays were used to study platelets comprehensively. FindingsCVD Patients were categorized in the age groups 40–59, 60–79, and 80–100 years. Progressive decline in platelet health was observed in the 40–79 years age cohort, marked by increase in oxidative stress, hyperactivation and apoptotic markers. Paradoxically, this was reversed in patients aged above 79 years and the improved platelet phenotype was associated with lower oxidative damage. The platelets from the very old (80–100 year) group were found to be preloaded with increased antioxidants, which also contributed to higher resistance against induced redox insults. Cross sectional mouse studies excluded the effect of comorbidities and medications. Longitudinal mouse studies implicate an adaptive increase in antioxidant levels as the mechanism. InterpretationWe report a novel age associated, non-linear redox regulation in platelets in both humans and mice. In advanced age, there occurs an adaptive increase in platelet antioxidants, reducing the intracellular ROS and leading to a healthier platelet phenotype. Clinically, our results advocate the use of less aggressive antiplatelet therapies for CVD in the elderly population. FundStudy funded by NIH-NHLBI, RO1-HL122815 and RO1-HL115247.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.