Abstract

Age-related changes in the gene expression of the transcription factors, Phox2a and 2b, and two marker proteins, norepinephrine transporter (NET) and dopamine beta-hydroxylase (DBH), of noradrenergic neurons were characterized in the locus coeruleus (LC) and adrenal glands using in situ hybridization. Analysis of changes was performed in rats that were 1-23 months of age. Compared to 1-month-old rats, there was a 62% increase of Phox2a messenger RNA (mRNA) in the LC of 3-month-old rats, and a decline of 37% in 23-month-old rats. In contrast, levels of Phox2b mRNA in the LC remained unchanged in 3-month-old rats, but declined to a 30% reduction in 23-month-old rats. Interestingly, mRNA levels of NET in the LC decreased with increasing age to a reduction of 29%, 30% and 43% in 3-, 8- and 23-month-old rats, respectively. Similarly, DBH mRNA in the LC declined with increasing age to a 56% reduction in 23-month-old rats. mRNA levels of Phox2a, Phox2b, NET and DBH in the adrenal medulla of 23-month-old rats were significantly lower than those of 1-month-old rats. Semi-quantitative reverse transcription assays of the same genes yielded data similar to in situ hybridization experiments, with beta-actin mRNA levels being unchanged across the ages. Taken together, these data reveal that reduced Phox2 mRNAs in the LC and adrenal medulla of aging rats are accompanied by a coincidental decline in mRNA levels of NET and DBH and suggest a possible relationship between Phox2 genes and the marker genes in noradrenergic neurons after birth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.