Abstract

Trees do not respond to climatic conditions uniformly, but instead show individualistic growth responses. The extent of and causes behind this within-stand variability represents significant uncertainty in predictions of how forests will respond to future climate change. We analyzed patterns of individualistic tree growth within two types of conifer stands of Central Europe – high-elevation Picea abies and low-elevation Pinus sylvestris forests. We quantified the relative effect of age, size, and topographic conditions on variability in growth patterns and climate-growth responses using principal component analysis and linear models, considering both year-to-year and decadal growth variability. Our results show that Picea abies stands with dominant temperature limitation exhibit greater growth coherency than Pinus sylvestris stands characterized by drought-limited growth. Growth variability and individual climate-growth responses in both forest types were mainly driven by tree size and age, while the effect of topographic conditions was less important. The effect of size and age variables was dominant considering decadal growth trends, whereas intermediate importance of topographic variables was observed for high-frequency growth variability and climate-growth responses. Our results highlight that between-tree variability in climatic signal and growth trends also reflects the specific distribution of the age/size and topographic parameters within the stand. We suggest careful selection of datasets used for large-scale assessments of growth trends and climate-growth responses which should consider the age and size representation of sampled trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call