Abstract
T2 relaxation times on MRI are sensitive to the configuration of cartilage collagen and continually increase during aging in adults. In children, T2 relaxation times increase as a result of cartilage microstructure changes in early inflammatory arthritis. The purpose of this study was to determine age- and sex-related differences in T2 mapping of the patellar cartilage in children and adolescents during normal skeletal maturation. Ninety-seven subjects (age range, 5-22 years; 51 females and 46 males; mean age, 14.3 and 13.7 years, respectively) without patellofemoral instability or inflammatory arthritis were included. All subjects underwent 1.5-T knee MRI with T2 mapping. The mean T2 relaxation time and thickness of the patellar cartilage were documented for each MRI examination. Skeletal maturation was determined by physeal patency (open; or closed or closing) on MRI. The associations between T2 relaxation times, cartilage thickness, sex, age, and physeal patency were assessed using Wilcoxon rank sum test and least-squares means regression models. T2 relaxation times and thickness of the patellar cartilage significantly decreased (p<0.0001) with increasing chronologic age. T2 relaxation times and cartilage thickness in the open physis group were found to be greater than in the closed or closing physis group (p<0.0001). T2 relaxation times and cartilage thickness were greater in males than in females (p<0.05). In contrast to senescent changes in adults, skeletal maturation in children results in a sequential decrease in T2 relaxation times that are age- and sex-dependent. Similar to cartilage in adults, cartilage in children gets progressively thinner during skeletal maturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.