Abstract
This paper compares two approaches of automatic age and gender classification with 7 classes. The first approach are Gaussian mixture models (GMMs) with universal background models (UBMs), which is well known for the task of speaker identification/verification. The training is performed by the EM algorithm or MAP adaptation respectively. For the second approach for each speaker of the test and training set a GMM model is trained. The means of each model are extracted and concatenated, which results in a GMM supervector for each speaker. These supervectors are then used in a support vector machine (SVM). Three different kernels were employed for the SVM approach: a polynomial kernel (with different polynomials), an RBF kernel and a linear GMM distance kernel, based on the KL divergence. With the SVM approach we improved the recognition rate to 74% (p < 0.001) and are in the same range as humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.