Abstract

The effects of age and gender on EEG signal have been investigated in clinical psychophysiology. However extracting age and gender information from EEG data has not been addressed. This information is useful in building automatic systems that can classify a person in to gender or age groups based on EEG characteristics of that person, index EEG data for searching, identify or verify a person, and improve brain-computer interface systems. We propose in this paper a framework of automatic age and gender classification system using EEG data. We also propose a speech-based method to extract paralinguistic features in EEG signal that contain rich age and gender information and apply these features to improve performance of our age and gender classification system. Experimental results for system evaluation and comparison are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.