Abstract

The ability to accurately process brief, successive acoustic signals rapidly presented to the central nervous system is believed to underlie successful language development. The limits of temporal resolution of the auditory system, often assessed using gap detection tasks, has been widely studied in relation to developing and decoding speech. In the present study, a reflex modification paradigm was used to investigate potential shifts in gap detection thresholds in rats across development, with test sessions beginning on postnatal day (P) 15, P35 and P64. We found that thresholds decreased over the course of development. These thresholds were determined to lie between 10 and 20 ms for the P15 and P35 groups, and between 5 and 10 ms for the P64 group. Moreover, we observed improvements in gap detection thresholds in all age groups over 5 days of testing, including the youngest age group (P15). These later results suggest that experience-dependent plasticity mechanisms at the level of sensory processing are operational and observable both very early in development, and also in adult animals. The present findings also demonstrate maturational improvements in silent gap detection using a pre-pulse inhibition paradigm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.