Abstract

Autophagy impairment in Huntington disease (HD) has been reported for almost two decades. However, the molecular mechanisms underlying this phenomenon are still unclear. This is partially because it is challenging to model the impact of the disease-causing mutation, aging, as well as the selective vulnerability of neurons in a single model. Recently developed direct neuronal reprogramming that allows researchers to induce neurons-of-interest retaining biological aging information made it possible to establish HD cellular models to study more relevant age- and disease-related molecular changes in neurons. We here summarized the findings from a few latest studies utilizing directly reprogrammed HD neurons and discussed the new insights they brought to the understanding of the age- and disease-related autophagy impairment in HD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.