Abstract
The origin, age, and dynamics of carbonate sediments in Kailua Bay on Oahu, Hawaii, are described. The shoreface (from shoreline to 4 km offshore) consists of a broad (5 km2) fringing coral reef ecosystem bisected by a sinuous, shore-normal, sand-filled paleostream channel 200–300 m wide. The median grain diameter of surface sands is finest on the beach face ( 90% biogenic carbonate, dominated by skeletal fragments of coralline algae (e.g. Porolithon, up to 50%) followed by the calcareous green alga Halimeda (up to 32%), coral fragments (1–24%), mollusc fragments (6–21%), and benthic foraminifera (1–10%). Sand composition and age across the shoreface are correlated to carbonate production. Corals and coralline algae, principal builders of the reef framework, are younger and more abundant in sands along the channel axis and in offshore reefal areas, while Halimeda, molluscs, and foraminifera are younger and more dominant in nearshore waters shoreward of the main region of framework building. Shoreface sediments are relatively old. Of 20 calibrated radiocarbon dates on skeletal constituents of sand, only three are younger than 500 years b.p.; six are 500–1000 years b.p.; six are 1000–2000 years b.p.; and five are 2000–5000 years b.p. Dated fine sands are older than medium to coarse sands and hence may constitute a reservoir of fossil carbonate that is distributed over the entire shoreface. Dominance of fossiliferous sand indicates long storage times for carbonate grains, which tend to decrease in size with age, such that the entire period of relative sea-level inundation (∼5000 years) is represented in the sediment. Despite an apparently healthy modern coral ecosystem, the surficial sand pool of Kailua Bay is dominated by sand reflecting an antecedent system, possibly one that existed under a +1–2 m sea-level high stand during the mid- to late Holocene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.