Abstract

Periodicity is one of the most common phenomena in the physical world. The problem of periodicity analysis (or period detection) is a research topic in several areas, such as signal processing and data mining. However, period detection is a very challenging problem, due to the sparsity and noisiness of observational datasets of periodic events. This paper focuses on the problem of period detection from sparse and noisy observational datasets. To solve the problem, a novel method based on the approximate greatest common divisor (AGCD) is proposed. The proposed method is robust to sparseness and noise, and is efficient. Moreover, unlike most existing methods, it does not need prior knowledge of the rough range of the period. To evaluate the accuracy and efficiency of the proposed method, comprehensive experiments on synthetic data are conducted. Experimental results show that our method can yield highly accurate results with small datasets, is more robust to sparseness and noise, and is less sensitive to the magnitude of period than compared methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.