Abstract

Object detection is increasingly in demand in IoT service applications. Deep learning based object detection algorithms are now in fashion. As the most popular multi-scale object detection network at present, Feature Pyramid Network achieves feature augmentation by fusing features of neighboring layers. It is widely used in the most advanced object detectors to detect objects of different scales. In this paper, we propose a new attention mechanism guided bidirectional feature pyramid architecture named AgBFPN to enhance the transfer of semantic and spatial information between each feature map. We design Channel Attention Guided Fusion(CAGF) Module and Spatial Attention Guided Fusion(SAGF) Module to enhance feature fusion. The CAGF mitigates the loss of information induced by channel reduction and better transfers the semantic information from high-level to low-level features. The SAGF passes the rich spatial information of shallow features into deep features. Our experiments show that AgBFPN achieves higher Average Precision for multi-scale object detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.