Abstract

Abstract Published data for large-amplitude asymptotic giant branch variables in the Large Magellanic Cloud (LMC) are re-analysed to establish the constants for an infrared (K) period–luminosity relation of the form MK=ρ[log P− 2.38]+δ. A slope of ρ=−3.51 ± 0.20 and a zero-point of δ=−7.15 ± 0.06 are found for oxygen-rich Miras (if a distance modulus of 18.39 ± 0.05 is used for the LMC). Assuming this slope is applicable to Galactic Miras we discuss the zero-point for these stars using the revised Hipparcos parallaxes together with published very long baseline interferometry (VLBI) parallaxes for OH masers and Miras in globular clusters. These result in a mean zero-point of δ=−7.25 ± 0.07 for O-rich Galactic Miras. The zero-point for Miras in the Galactic bulge is not significantly different from this value. Carbon-rich stars are also discussed and provide results that are consistent with the above numbers, but with higher uncertainties. Within the uncertainties there is no evidence for a significant difference between the period–luminosity relation zero-points for systems with different metallicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.