Abstract

The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods, respectively. Various techniques were used to characterize physicochemical properties of these materials. Catalytic performance of the samples was evaluated for methanol combustion. The cubically crystallized Co3O4 support displayed a three-dimensionally ordered mesoporous structure. The supported noble metal nanoparticles (NPs) possessed a surface area of 115−125 m2/g, with the noble NPs (average size = 2.8−4.5 nm) being uniformly dispersed on the surface of meso-Co3O4. Among all of the samples, 0.68 wt% Ag0.75Au1.14Pd/meso-Co3O4 showed the highest catalytic activity (T50% = 100 °C and T90% = 112 °C at a space velocity of 80000 mL (g−1 h−1). The partial deactivation of the 0.68 wt% Ag0.75Au1.14Pd/meso-Co3O4 sample due to water vapor or carbon dioxide introduction was reversible. It is concluded that the good catalytic performance of 0.68 wt% Ag0.75Au1.14Pd/meso-Co3O4 was associated with its highly dispersed Ag0.75Au1.14Pd alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between Ag0.75Au1.14Pd alloy NPs and meso-Co3O4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call