Abstract

A relative humidity (RH) sensor based on long-period grating (LPG) with different responses is proposed by utilizing agarose gel as the sensitive cladding film. The spectral characteristic is discussed as the ambient humidity level ranges from 25% to 95% RH. Since increment of RH will result in volume expansion and refractive index increment of the agarose gel, the LPG is sensitive to applied strain and ambient refractive index; both the resonance wavelength and coupling intensity present particular responses to RH within two different RH ranges (25%-65% RH and 65%-96% RH). The coupling intensity decreases within a lower RH range while it increases throughout a higher RH range. The resonance wavelength is sensitive to the higher RH levels, and the highest sensitivity reaches 114.7 pm/% RH, and shares the same RH turning point with coupling intensity response. From a practical perspective, the proposed RH sensor would find its potential applications in high humidity level, temperature-independent RH sensing and multiparameter sensing based on wavelength/power hybrid demodulation and even static RH alarm for automatic monitoring of a particular RH value owing to the nonmonotonic RH dependence of the transmission power within the whole tested RH range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.