Abstract

Biomass-derived carbon materials retain the unique porous structure of biological raw materials and have environmental advantages, making them a popular choice for electromagnetic microwave absorption research. The microwave absorption performance of biomass-derived carbon materials is largely influenced by their pore structure, which can be controlled by chemical activators. In this study, ZnCl2 was chosen as the activator and de-impregnated agarics with Fe(NO3)3·9 H2O for pretreatment. The Fe(NO3)3·9 H2O can provide magnetic Fe particles for the material to enhance the magnetic loss ability. And the weakly acidic ZnCl2 can avoid the pollution of the environment, and its dehydration and dehydroxylation properties can release the hydrogen and oxygen in the biomass char material in the form of water vapor, and release the hydrogen and oxygen in the biomass carbon material in the form of water vapor, and form a porous structure. porous structure. In addition, ZnCl2 will be converted to ZnO during the activation process, and the removal of ZnO by acid washing will increase the internal pore volume, form a conductive network, and form a rich three-dimensional interconnected pore structure. The pretreated samples were vacuum carbonized at high temperature to obtain agarics-derived porous Fe/C material, which is an excellent lightweight and high-performance microwave absorbing material. The resulting material has a wider absorption bandwidth and improved microwave absorption performance. At a thickness of 2.55 mm and a frequency of 8.31 GHz, the RLmin of Fe/C material is −51.14 dB. Furthermore, at a thickness of 2.13 mm, it has an effective absorption bandwidth of 3.63 GHz, covering most of the X-band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.