Abstract

A simple in vitro system was developed as a model structure of biofilms and to evaluate their susceptibility to antibiotics. Viable Escherichia coli cells were entrapped in agar gel layers and incubated for 2 days in a minimal salt medium supplemented with glucose. After subsequent culture for 3 weeks under metal ion depletion, the biomass distribution inside the gel layer was highly heterogeneous. The cell concentration reached 1011 cfu/g gel in the outer regions of the agar structure whereas the inner gel areas were less colonized (109 cfu/g gel). Immobilized cells displayed enhanced resistance to latamoxef as compared with free microorganisms. Moreover, a 3-week-old immobilized-cell membrane was less susceptible to the antibiotic than a younger (2 days old) one. The exposure for 11 h to 64 μg/cm3 latamoxef killed about 90% of the bacteria entrapped in the older agar layer, whereas the number of killed cells was 100-fold higher in the younger structure. Effective diffusivity measurements showed that the diffusion of latamoxef in the biofilm-like agar structures was moderately restricted as compared to that in water, and independent of the immobilized-cell content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.