Abstract

A previous study showed that antitumor-analgesic peptide (AGAP), a novel recombinant polypeptide, which had been expressed in Escherichia coli, exhibits analgesic and antitumor effects in mice. In the present study, we investigated the underlying analgesic mechanism of AGAP. The effect of AGAP on voltage-gated calcium channels (VGCCs) was assessed in acutely isolated rat dorsal root ganglia (DRG) neurons using the whole-cell patch clamp technique. The results showed that AGAP potently inhibited VGCCs, especially high-voltage activated (HVA) calcium channels. AGAP inhibited HVA and T-type calcium currents in a dose-dependent manner, but had no significant effect on their dynamic functions in rat small-diameter DRG neurons. AGAP inhibited N- and L-type calcium currents at 78.2% and 57.3%, respectively. Thus, the present study demonstrates that AGAP affects calcium currents through the inhibition of N-, L- and T-type channels in DRG neurons, explaining the potential mechanisms of antinociception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call