Abstract

Automatic workflow recognition from surgical videos is fundamental and significant for developing context-aware systems in modern operating rooms. Although many approaches have been proposed to tackle challenges in this complex task, there are still many problems such as the fine-grained characteristics and spatial-temporal discrepancies in surgical videos. We propose a contrastive learning-based convolutional recurrent network with multi-level prediction to tackle these problems. Specifically, split-attention blocks are employed to extract spatial features. Through a mapping function in the step-phase branch, the current workflow can be predicted on two mutual-boosting levels. Furthermore, a contrastive branch is introduced to learn the spatial-temporal features that eliminate irrelevant changes in the environment. We evaluate our method on the Cataract-101 dataset. The results show that our method achieves an accuracy of 96.37% with only surgical step labels, which outperforms other state-of-the-art approaches. The proposed convolutional recurrent network based on step-phase prediction and contrastive learning can leverage fine-grained characteristics and alleviate spatial-temporal discrepancies to improve the performance of surgical workflow recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.