Abstract

Reactions of Ag(I) salt, NH(4)(E(2)P(OR)(2)) (R = (i)Pr, Et; E = Se, S), and NaBH(4) in a 7:6:1 ratio in CH(2)Cl(2) at room temperature, led to the formation of hydride-centered heptanuclear silver clusters, [Ag(7)(H){E(2)P(OR)(2)}(6)] (R = (i)Pr, E = Se (3): R = Et; E = S(4). The reaction of [Ag(10)(E){E(2)P(OR)(2)}(8)] with NaBH(4) in CH(2)Cl(2) produced [Ag(8)(H){E(2)P(OR)(2)}(6)](PF(6)) (R = (i)Pr, E = Se (1): R = Et; E = S(2)), which can be converted to clusters 3 and 4, respectively, via the addition of 1 equiv of borohydride. Intriguingly clusters 1 and 2 can be regenerated via adding 1 equiv of Ag(CH(3)CN)(4)PF(6) to the solution of compounds 3 and 4, respectively. All complexes have been fully characterized by NMR ((1)H, (77)Se, (109)Ag) spectroscopy, UV-vis, electrospray ionization mass spectrometry (ESI-MS), FT-IR, thermogravimetric analysis (TGA), and elemental analysis, and molecular structures of 3(H) and 4(H) were clearly established by single crystal X-ray diffraction. Both 3(H) and 4(H) exhibit a tricapped tetrahedral Ag(7) skeleton, which is inscribed within an E(12) icosahedron constituted by six dialkyl dichalcogenophosphate ligands in a tetrametallic-tetraconnective (μ(2), μ(2)) bonding mode. Density functional theory (DFT) calculations on the models [Ag(7)(H)(E(2)PH(2))(6)] (E = Se: 3'; E = S: 4') yielded to a tricapped, slightly elongated tetrahedral silver skeleton, and time-dependent DFT (TDDFT) calculations reproduce satisfyingly the UV-vis spectrum with computed transitions at 452 and 423 nm for 3' and 378 nm for 4'. Intriguingly further reactions of [Ag(7)(H){E(2)P(OR)(2)}(6)] with 8-fold excess amounts of NaBH(4) produced monodisperse silver nanoparticles with an averaged particle size of 30 nm, which are characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), and UV-vis absorption spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.