Abstract
Olive-like BiVO4 microstructures with lengths of 600–1000 nm and widths of 300–600 nm have been synthesized via a facile and additive-free solvothermal method. Studies find that the type of solvent plays an important role in the morphology of the final products. Furthermore, Ag3PO4 nanocrystals are successfully deposited on monoclinic olive-like BiVO4 via in situ precipitation method. The as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), photoluminescence (PL) spectra, and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activities of the catalysts are evaluated by degradation of rhodamine B (RhB) and methylene blue (MB) under visible light (≥420 nm) irradiation. The experimental results suggest that catalytic activity of the composite photocatalysts is greatly influenced by the loading level of Ag3PO4. The molar ratio of 0.8:1.0 Ag3PO4-loaded BiVO4 exhibits higher photocatalytic activity in both the decolorization of RhB and MB than that of individual BiVO4 and P25. The observed improvement in photocatalytic activity is associated with the extended absorption in the visible light region resulting from the Ag3PO4 nanoparticles, and the effective separation of photogenerated carriers at the Ag3PO4/BiVO4 interfaces through the formation of heterojunction structure. The study provides a general and effective method in the fabrication of composite with sound heterojunctions that may show a variety of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.