Abstract

AbstractBACKGROUNDPerovskite‐type mixed oxides with the formula La1‐xAgxCoO3 (xAg = 0.05, 0.10, 0.20) were successfully used as precursors to prepare cobalt nanoparticle catalysts for use in the catalytic hydrogenation of levulinic acid (LA). The calcined, reduced, and post reaction catalysts were characterized by X‐ray diffraction, N2 adsorption isotherms at −196 °C, H2‐Temperature programmed reduction, NH3‐Temperature programmed desorption, H2 chemisorption, and X‐ray photoelectron spectroscopy. The catalytic performance was evaluated in a batch reactor at 50 bar of H2 at different temperatures to determine the kinetic parameters.RESULTSAn increase in the reducibility of the perovskite and Co3+ species contents was detected upon the silver doping. The highest catalytic activity was observed for the perovskite with xAg = 0.20 and this activity was attributed to the high content of metallic cobalt.CONCLUSIONThe active site corresponds to surface metallic cobalt and the presence of silver increases the amount of reduced cobalt. The high hydrogenating capacity of metallic cobalt explains the 100% selectivity towards gamma valero lactone of the synthesized catalysts. © 2022 Society of Chemical Industry (SCI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.