Abstract

Using the hydrolysis of tetraethylorthosilicate, a uniform and conformal layer of porous SiO(2) with controlled thickness has been coated onto the oblique angle deposited Ag nanorod (AgNR) array to form an aligned AgNR-SiO(2) core-shell array nanostructure. The morphology, optical property, SERS response, and surface wettability of the AgNRs with different SiO(2) shell thicknesses have been obtained by multiple characterization techniques. The morphological characterization shows that each AgNR on the array is coated with a uniform and porous silica shell independently and the growth of shell thickness follows a linear function versus the coating time. Thickening of the shell induces a monotonic decrease of the apparent contact angle, red-shift of the transverse mode of the localized surface plasmon resonance peak, and makes the SiO(2) shell more compact. The SERS response of 4-Mercaptophenol on these substrates exhibits an exponential decay behavior with the increasing coating time, which is ascribed to the decreasing Ag surface coverage of core-shell nanorods. Under the assumption that the Ag surface coverage is proportional to the SERS intensity, one can estimate the evolution of SiO(2) coverage on AgNRs. Such coverage evolution can be used to qualitatively explain the LSPR wavelength change and quantitatively interpret the contact angle change based on a double Cassie's law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.