Abstract

Industrial application of electrochemical hydrogen production urgently requires the development of highly efficient, stable, and inexpensive electrocatalysts that can drive a large current density. Here, Ag@Pt icosahedral nanocrystals (Ag@Pt icosahedral NCs) catalysts were successfully prepared through one-step solvothermal synthesis for addressing those challenges. The synergies of geometric effect and electronic effect triggered by the discrepancy of different components greatly enhance the electrocatalytic performance in the hydrogen evolution reaction (HER) process at large current densities over wide pH ranges. Excitingly, the Ag@Pt icosahedral NCs could reach 4000 mA cm−2 at 232 mV under the acidic medium and also showed efficient catalytic activity in 1 M KOH and 1 M phosphate buffered saline (PBS) media, improving their potential application in industrialization. Density functional theory (DFT) calculation results show that the electronic synergistic effect brought by the core-shell structure weakens the optimal free energy of hydrogen adsorption (ΔGH*), promoting the water decomposition kinetics and greatly achieving high catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.