Abstract

Effective design of ultrafast new-generation photocatalysts is a challenging task that requires highly dedicated efforts. This research focused on the development and design of ultrafast smart ternary photocatalysts containing SrSnO3 nanostructures in conjugation with chitosan (CTSN) and silver (Ag) nanoparticles by a very simple and straightforward methodology. Modern analytical tools such as FESEM, TEM, XRD, XPS, FTIR, and UV-Vis spectroscopy were employed to characterize the synthesized nanostructures. XRD and XPS analysis confirmed the successful creation of ternary organization among the Ag, CTSN, and SrSnO3. The TEM images clearly confirmed that CTSN possessed overlapping micron-sized sheets with a layered morphology, whereas the undoped SrSnO3 particles exhibited spherical and elongated shapes and particle sizes ranging from 20 to 80 nm. These particles were produced in high density with homogeneously distributed Ag nanoparticles (4-15 nm). The bandgap energy (Eg) for bare SrSnO3, CTSN/SrSnO3, and Ag@CTSN/SrSnO3 nanocomposites was found to be 4.0, 3.94, and 3.7 eV, respectively. The photocatalytic efficiencies of all newly created photocatalysts were evaluated by considering an antibiotic linezolid drug and methylene blue (MB) dye molecule as target analytes. Among all investigated samples, the Ag@CTSN/SrSnO3 photocatalyst was found to be highly superior, with ultrafast removal of the linezolid drug at 96.02% within 25 min and almost total removal of the MB dye in just 12 min under UV light irradiation. The Ag@CTSN/SrSnO3 photocatalyst exhibited removal rate that was 3.36 times faster than that of bare SrSnO3. The present report delivers a highly promising, extremely efficient, and very simple, straightforward treatment methodology for the effective destruction of lethal and notorious pollutants, enabling the appropriate management of current environmental concerns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.