Abstract

Ag-decorated g-C3N4 (denoted as Ag/CN-x) was prepared by a one-step calcination method, and the influences of calcination time on structure, morphology, surface composition, photocatalytic performance, and catalytic reduction activity of the prepared Ag/CN-x samples were investigated. The tests showed that the Ag/CN-8 prepared through by calcination for 8 h exhibited the best photocatalytic degradation efficiency of methyl orange (98.7% within 2 h) and the best catalytic reduction property of 4-nitrophenol (100% within 70 s). Meanwhile, these Ag/CN-x samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), photoluminescence (PL), photocurrent response, and electrochemical impedance spectroscopy (EIS) Nyquist plots. It was found that the Ag/CN-8 prepared through calcination for 8 h had a higher specific surface area, higher dispersibility of silver nanoparticles (Ag NPs), the widest range of visible light response, and the lowest photogenerated electron–hole recombination rate. The results of the trapping experiments indicated that a superoxide radical plays a major role. Moreover, a possible mechanism of photocatalytic degradation in methyl orange and catalytic reduction 4-nitrophenol was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call