Abstract
In this work, NH2-MIL-125(Ti) were adopted to eliminate Ag(I) from the simulated silver-plating wastewater. The results revealed that NH2-MIL-125 exhibited superior adsorption performance toward Ag(I) ions with uptake capacity of 192.5 mg·g−1 to that of MIL-125 (139.8 mg·g−1) within 60 min. The isotherm and kinetic data were exactly fitted to both Langmuir and Pseudo-second-order models. The thermodynamic parameters like enthalpy change (ΔHo), entropy change (ΔSo) and Gibbs free energy change (ΔGo) confirmed that the adsorption process was spontaneous, exothermic and disordered. As well, the influencing parameters of the adsorption process like pH, adsorbent dose and foreign metal ions were examined. The fixed-bed column filled with NH2-MIL-125 powder immobilized onto cotton fiber could continuously adsorb Ag(I), which offered the possibility of achieving potential large-scale applications. The possible adsorption mechanism of NH2-MIL-125 toward Ag(I) primarily involved the electrostatic adsorption and coordinative interactions, which was further affirmed by the density functional theory (DFT) calculations. In addition, the used NH2-MIL-125 saturated with Ag(I) ions could be either desorbed to release the Ag(I) for NH2-MIL-125 re-generation or further calcinated into Ag/C/TiO2 photocatalyst to accomplish photocatalytic degradation toward organic pollutants like methylene blue (MB) and phenol. In this work, the 3Rs (reduce, recycle and reuse) approach was practiced, accomplishing that one stone killed three birds (pollutant elimination, resource recovery and resource utilization).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.