Abstract
Two-dimensional (2D) semiconductors have generated considerable attention for high-performance electronics and optoelectronics. However, to date, it is still challenging to mechanically exfoliate large-area and continuous monolayers while retaining their intrinsic properties. Here, we report a simple dry exfoliation approach to produce large-scale and continuous 2D monolayers by using a Ag film as the peeling tape. Importantly, the conducting Ag layer could be converted into AgOx nanoparticles at low annealing temperature, directly decoupling the conducting Ag with the underlayer 2D monolayers without involving any solution or etching process. Electrical characterization of the monolayer MoS2 transistor shows a decent carrier mobility of 42 cm2 V-1 s-1 and on-state current of 142 μA/μm. Finally, a plasmonic enhancement photodetector could be simultaneously realized due to the direct formation of Ag nanoparticles arrays on MoS2 monolayers, without complex approaches for nanoparticle synthesis and integration processes, demonstrating photoresponsivity and detectivity of 6.3 × 105 A/W and 2.3 × 1013 Jones, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.