Abstract

We examined dozens of aftershock sequences in Hawaii in terms of Gutenberg‐Richter and modified Omori law parameters. We studied p, the rate of aftershock decay; Ap, the aftershock productivity, defined as the observed divided by the expected number of aftershocks; and c, the time delay when aftershock rates begin to fall. We found that for earthquakes shallower than 20 km, p values >1.2 are near active magma centers. We associate this high decay rate with higher temperatures and faster stress relaxation near magma reservoirs. Deep earthquakes near Kilauea's inferred magma transport path show a range of p values, suggesting the absence of a large, deep magma reservoir. Aftershock productivity is >4.0 for flank earthquakes known to be triggered by intrusions but is normal (0.25 to 4.0) for isolated main shocks. We infer that continuing, post‐main shock stress from the intrusion adds to the main shock's stress step and causes higher Ap. High Ap in other zones suggests less obvious intrusions and pulsing magma pressure near Kilauea's feeding conduit. We calculate stress rates and stress rate changes from pre‐main shock and aftershock rates. Stress rate increased after many intrusions but decreased after large M7–8 earthquakes. Stress rates are highest in the seismically active volcano flanks and lowest in areas far from volcanic centers. We found sequences triggered by intrusions tend to have high Ap, high (>0.10 day) c values, a stress rate increase, and sometimes a peak in aftershock rate hours after the main shock. We interpret these values as indicating continuing intrusive stress after the main shock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call