Abstract
AbstractThe unique capabilities and characteristics provided by afterglow or remote plasma chemical oxide growth processing of silicon carbide are reviewed. Such processing provides for thermal growth of oxide films at temperatures far below those employed by conventional atmospheric processing methods. Overshadowing this growth capability is the ability to create chemistries, sequential procedures, and specific process environments to address material and defect issues in a manner not possible under conventional atmospheric conditions. The details and outcomes of multi-step afterglow oxidation processing of SiC will be discussed. An example sequence might include; 1) surface conditioning, 2) film growth at 850C and 1 Torr total pressure, and 3) reduced pressure unexcited media post-growth treatments. Surface conditioning impacts the thickness uniformity of the final oxide film and the oxidation rate. The film growth interval produces a nominal 500Å of oxide film in 90 minutes at 850C, a temperature that would not produce any significant oxide film at atmospheric pressure. And the post-growth processing improves the performance of the dielectric film. Using in-line corona-Kelvin metrology the electrical characteristics stemming from these processes have been determined. Electrical effective oxide thickness results were used to assess thickness uniformity and to estimate process rate constants for comparison to other process methods. Fowler-Nordheim, F-N, characteristics determined with the same metrology demonstrate that afterglow, AG, oxides require higher field levels to produce the same F-N current as thermal oxides and that AG films are less susceptible to stress fluence. Process extensions from these and other results are discussed and related to chemical, physical, and electrical film outcomes and potential pathways to improve control over dielectric SiC structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: MRS Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.