Abstract

Aeroheating wind-tunnel tests were conducted on a 0.028 scale model of an orbiter concept considered for a possible Mars sample return mission. The primary experimental objectives were to characterize hypersonic near wake closure and determine if shear layer impingement would occur on the proposed orbiter afterbody at incidence angles necessary for a Martian aerocapture maneuver. Global heat transfer mappings, surface streamline patterns, and shock shapes were obtained in the NASA Langley 20-Inch Mach 6 Air and CF(sub 4) Tunnels for post-normal shock Reynolds numbers (based on forebody diameter) ranging from 1,400 to 415,000, angles of attack ranging from -5 to 10 degrees at 0, 3, and 6 degree sideslip, and normal-shock density ratios of 5 and 12. Laminar, transitional, and turbulent shear layer impingement on the cylindrical afterbody was inferred from the measurements and resulted in a localized heating maximum that ranged from 40 to 75 percent of the reference forebody stagnation point heating. Comparison of laminar heating prediction to experimental measurement along the orbiter afterbody highlight grid alignment challenges associated with numerical simulation of three-dimensional separated wake flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.