Abstract

The oil gland secretion of the oribatid mite Nothrus palustris is known to show the phenomenon of juvenile–adult polymorphism, i.e., juvenile instars produce secretions predominated by geranial, whereas adults secrete dehydrocineole along with a number of chemically unidentified compounds. We here re-analyzed the secretions of adult N. palustris by GC–MS and NMR spectroscopy, eventually identifying the unknown compounds as p-menthane monoterpenoids. The major components were two isomeric 6-isopropenyl-3-methyl-cyclohex-3-en-1-yl formates (= p-1,8-menthadien-5-yl formates), which accounted for about 75% of the secretion. These were accompanied by five additional, only partly identified p-menthanes (or p-methane-derivatives), all of which represented minor or trace components. In addition, adult secretions contained two C21-hydrocarbons, 1,12-heneicosadiene (major) and a heneicosatriene (minor). Menthane monoterpenoids represent a novel sub-class of terpene compounds in the oil gland secretions of Oribatida. In case of N. palustris, we assume that both geranial and p-menthane monoterpenoids arise via the mevalonate pathway which obviously shows a split at the level of geranyl pyrophosphate, leading to geranial in juveniles and to p-menthanes in adults. The significance of methane occurrence in oil glands as well as the taxonomic distribution of juvenile–adult polymorphism in oribatid oil gland secretions is discussed. The latter phenomenon—i.e., “chemo-metamorphosis” of secretions—is not known from early- and middle-derivative Oribatida nor from Astigmata, but appears to be more common in some derivative desmonomatan and brachypyline oribatid groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call