Abstract

The AlphaFold2 neural network model has revolutionized structural biology with unprecedented performance. We demonstrate that by stochastically perturbing the neural network by enabling dropout at inference combined with massive sampling, it is possible to improve the quality of the generated models. We generated ∼6000 models per target compared with 25 default for AlphaFold-Multimer, with v1 and v2 multimer network models, with and without templates, and increased the number of recycles within the network. The method was benchmarked in CASP15, and compared with AlphaFold-Multimer v2 it improved the average DockQ from 0.41 to 0.55 using identical input and was ranked at the very top in the protein assembly category when compared with all other groups participating in CASP15. The simplicity of the method should facilitate the adaptation by the field, and the method should be useful for anyone interested in modeling multimeric structures, alternate conformations, or flexible structures. AFsample is available online at http://wallnerlab.org/AFsample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.