Abstract

Pelagic species have been traditionally thought to occupy vast, genetically interconnected, geographic ranges in an essentially homogeneous environment. Although this view has been challenged recently for some mesopelagic planktonic taxa, the population structure of hyponeustonic (surface-drifting) species remains unknown. Here, we test the hypothesis of panmixis in Glaucus atlanticus, a cosmopolitan neustonic nudibranch, by assessing the genetic differentiation of multiple representatives from a global neustonic sampling effort. Specimens were collected from all subtropical oceanic gyre systems (North Atlantic, South Atlantic, North Pacific, South Pacific, and Indian Ocean). We sequenced a fragment of the mitochondrial cytochrome oxidase I gene for 98 individuals and performed population structure, differentiation (analysis of molecular variance, spatial analysis of molecular variance, F ST, Jost’s D), and molecular clock analyses. Our results indicate that G. atlanticus is not globally panmictic, but that populations appear to be panmictic within ocean basins. We detected several topologically ectopic haplotypes in the Atlantic Ocean, but the molecular clock analysis indicates that these have diverged from closely related Indo-Pacific haplotypes over 1.2 MYA, coinciding with cooling in waters around in the southern tip of Africa and resulting oceanographic changes. These data and the fact that G. atlanticus is not known from polar latitudes suggest that gene flow between ocean basins is hindered by physical barriers (supercontinents) and water temperatures in the Arctic and Southern Oceans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call