Abstract
African swine fever virus (ASFV) is an extensive and intricate double-stranded DNA virus with approximately 100% lethality in domestic swine. There is no effective vaccine to combat this virus, and this has led to substantial economic losses in the swine industry. ASFV encodes various proteins that impede interferon-based immune defenses in the host by employing diverse mechanisms. However, the roles of most of these proteins remain unknown. Therefore, understanding the immune evasion mechanisms employed by ASFV may facilitate the development of effective measures against the virus. In this study, we discovered a negative regulation of the type I interferon (IFN) response by the ASFV ribonuclease reductase large subunit pF778R. This novel type Ⅰ IFN response antagonist significantly inhibits IFN-α-induced interferon-stimulated response element promoter activation, precludes the upregulation of various interferon-stimulated genes, and prevents STAT1 nuclear translocation. Mechanistically, pF778R did not affect the protein levels of crucial molecules in the JAK/STAT signaling pathway or engage in direct interactions. However, pF778R expression impedes type I IFN responses mediated by the JAK/STAT signaling pathway. Further investigations revealed that pF778R did not interfere with STAT1 phosphorylation or dimerization, but it inhibited IFN signaling by weakening the nuclear accumulation of activated STAT1. The critical role of the ASFV protein pF778R in evading IFN-I-mediated innate immunity highlights a unique mode of ASFV evasion and provides insights into the pathogenic mechanism of the virus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.