Abstract

Pathogenic African swine fever virus (ASFV) isolates primarily target cells of the mononuclear-phagocytic system in infected swine and replicate efficiently in primary macrophage cell cultures in vitro. ASFVs can, however, be adapted to grow in monkey cell lines. Characterization of two cell culture-adapted viruses, MS16 and BA71V, revealed that neither virus replicated in macrophage cell cultures. Cell viability experiments and ultrastructural analysis showed that infection with these viruses resulted in early macrophage cell death, which occurred prior to viral progeny production. Genomic cosmid clones from pathogenic ASFV isolate E70 were used in marker rescue experiments to identify sequences capable of restoring MS16 and BA71V growth in macrophage cell cultures. A cosmid clone representing a 38-kbp region at the left terminus of the genome completely restored the growth of both viruses. In subsequent fine-mapping experiments, an 11-kbp subclone from this region was sufficient for complete rescue of BA71V growth. Sequence analysis indicated that both MS16 and BA71V had significant deletions in the region containing members of multigene family 360 (MGF 360) and MGF530. Deletion of this same region from highly pathogenic ASFV isolate Pr4 significantly reduced viral growth in macrophage cell cultures. These findings indicate that ASFV MGF360 and MGF530 genes perform an essential macrophage host range function(s) that involves promotion of infected-cell survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.