Abstract

Colorectal cancer (CRC) is a common and lethal disease. Globally, CRC is the third most commonly diagnosed cancer in males and the second in females. The most effective way to prevent CRC is through using colonoscopy to identify and remove precancerous growths at an early stage. The detection and removal of colorectal polyps have been found to be associated with a reduction in mortality from colorectal cancer. However, the false negative rate of polyp detection during colonoscopy is often high even for experienced physicians. With recent advances in deep learning based object detection techniques, automated polyp detection shows great potential in helping physicians reduce false positive rate during colonoscopy. In this paper, we propose a novel anchor-free instance segmentation framework that can localize polyps and produce the corresponding instance level masks without using predefined anchor boxes. Our framework consists of two branches: (a) an object detection branch that performs classification and localization, (b) a mask generation branch that produces instance level masks. Instead of predicting a two-dimensional mask directly, we encode it into a compact representation vector, which allows us to incorporate instance segmentation with one-stage bounding-box detectors in a simple yet effective way. Moreover, our proposed encoding method can be trained jointly with object detector. Our experiment results show that our framework achieves a precision of 99.36% and a recall of 96.44% on public datasets, outperforming existing anchor-free instance segmentation methods by at least 2.8% in mIoU on our private dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.