Abstract

Atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) have been used to investigate changes in topography and surface chemical functionality on PAN-based carbon fibres exposed to low-temperature, lowpower, oxygen plasmas. Unsized, type II, Cellion 6000 carbon fibres were treated in oxygen plasmas for 2–60 min at a power of ∼25 W. Increasing treatment time caused an increase in oxidation from surface alcohol(ether) to carbonyl and carboxyl species, but the total amount of oxidized carbon near the surface remained constant. SEM confirmed that treatments longer than 15 min resulted in pitting on the fibre surface, but even treatments of 60 min did not significantly reduce the overall fibre diameter. AFM showed surface morphology changes after oxygen plasma treatments for 2 and 15 min. 1 μm×1 μm AFM scans of untreated fibres showed processing grooves with a distribution of depths. Enlarged images along these grooves revealed that their walls were smooth. Oxygen plasma treatments of 2 min roughened fibre surfaces and created holes of the order of 50 nm evenly distributed with a spacing of 150 nm along the bottoms of the grooves. Treatment for 15 min smoothed the overall topography and resulted in smaller holes, of the order of 5–10 nm, with a spacing of < 50 nm. Calculated RMS roughnesses from the AFM data showed an initial increase in roughness with treatment, followed by a decrease to final values lower than those for untreated fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.