Abstract

The aim of this study is to investigate the nanocrystallization of steels caused by the transformation from the austenitic to the martensitic phase induced by a severe plastic deformation (SPD) treatment. In this framework, we applied an air blast shot peening treatment, which is a simple protocol widely used for industrial purposes. AISI 286 and AISI 316 specimens were peened for different times and polished using diamond pastes in order to remove corrugations higher than 1 mum. The characterization of the steel surfaces was performed by atomic force microscopy (AFM) operating in contact mode. Additional EDXD measurements were performed to confirm the phase transition. An AFM-based characterization at nanometric level of the steel surfaces is provided. When the peening exceeds a threshold time that, as expected, depends on the steel composition, a uniform nanostructuration is detected. It is well known that such rearrangement is associated to the growth of a martensitic phase. To date, AFM has been employed in this field only for few applications and to solve specific problems. On the other hand, our results demonstrate that this is a useful technique for the characterization of hardened surfaces, especially when non-destructive sample preparation treatments are required. Moreover, we show that AFM can be a useful tool also for in situ industrial diagnostics of metallic parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.