Abstract

Stainless steels such as ferrritic, austenitic, martensitic and duplex stainless steels are well known for their corrosion resistance to varying extents. Among these, austenitic stainless steels exhibit superior corrosion resistance and better ductility for formability. Therefore, the ability to give simple to intricate shapes in this grade of steel brings their potential for a wide range of applications. However, the meta-stable austenite in AISI 304 is known to undergo a strain induced martensitic (SIM) transformation during conventional rolling at room temperature. This strain induced martensite causes reduction in ductility and limits formability of stainless steel. Therefore, wavy rolling technique was developed to strengthen the stainless steel through microstructural refinement. In the current study, wavy rolling with 1.5 mm amplitude was conducted on 1 mm thick stainless steel sheet to different cycles ranging from 1-4. These rolled samples were characterized by optical and Atomic Force Microscopy (AFM) with resolutions down to the nanolevel. This AFM tool is in a position to bring out the details of grain refinement and topographical roughness emerging from crystalline and microstructural defects like orientation, precipitation, stacking faults, deformation bands, slip lines and shear bands with progress in rolling as referred by the number of rolling cycles here. The structural development is semi-quantitatively related to the degree of deformation and its effect on tensile properties during wavy rolling cycle. Keywords: Structural properties; Roughness; Deformation; Wavy rolling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.