Abstract
One of the major limitations for Atomic Force Microscopy (AFM)-based nanomanipulation is that AFM only has one sharp tip as the end-effector, and can only apply a point force to the nanoobject, which makes it extremely difficult to achieve a stable manipulation. For example, the AFM tip tends to slip-away during nanoparticle manipulation due to its small touch area, and there is no available strategy to manipulate a nanorod in a constant posture with a single tip since the applied point force can make the nanorod rotate more easily. In this paper, a robotic nano-hand method is proposed to solve these problems. The basic idea is using a single tip to mimic the manipulation effect that multi-AFM tip can achieve through the planned high speed sequential tip pushing. The theoretical behavior models of nanoparticle and nanorod are developed, based on which the moving speed and trajectory of the AFM tip are planned artfully to form a nano-hand. In this way, the slip-away problem during nanoparticle manipulation can be get rid of efficiently, and a posture constant manipulation for nanorod can be achieved. The simulation and experimental results demonstrate the effectiveness and advantages of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.