Abstract

Early stages of surface relief evolution of persistent slip markings (PSMs) in polycrystalline 316L austenitic stainless steel cycled with constant plastic strain amplitude at 93, 173 and 573K were studied using atomic force microscopy (AFM) and high-resolution scanning electron microscopy (SEM-FEG). Qualitative and quantitative data on the morphology of PSMs, occurrence of extrusions and intrusions and the kinetics of extrusion growth are reported for all temperatures. PSMs start in all cases as surface extrusions which are later accompanied by formation of intrusions. This finding is discussed with respect to the point defect formation within areas of localized cyclic slip and primarily to their mobility at different temperatures. Consequences of migration of respective point defects for surface relief formation and the conditions for creation of fatigue crack embryos, i.e. sharp intrusions are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.