Abstract
The research arose as a result of the need to use the femtosecond laser to fabricate sub-micron and nano-sized bridges that could be analyzed for the Josephson effect. The femtosecond laser has a low pulse duration of 130 femtoseconds. Hence in an optical setup it was assumed that it could prevent the thermal degradation of the superconductive material during fabrication. In this paper a series of micron and sub-micron sized bridges where fabricated on superconductive yttrium barium copper oxide (YBCO) thin film using the femtosecond laser, a spherical convex lens of focal length 30 mm and the G-code control programming language applied to a translation stage. The dimensions of the bridges fabricated where analyzed using the atomic force microscope (AFM). As a result, micron sized superconductive bridges of width 1.68 , 1.39 , 1.23 and sub-micron sized bridges of width 858 nm, 732 nm where fabricated. The length of this bridges ranged from 9.6 to 12.8 . The femtosecond laser technique and the spherical convex lens can be used to fabricate bridges in the sub-micron dimension.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.