Abstract

Thin film deposition (TFD) is used to coat materials including metals, glasses and textiles with film thicknesses varying from angstrom to millimeter values. TFD methods find usage in many industries such as coating parts for engineering industries, nuclear industries and decorative industries. TFD methods are applied on textile substrates to obtain anti-static, UV-absorbing, antimicrobial, superhydrophobic and fire-resistant properties. In this study, thermal evaporation which is a TFD technique was used to coat para-aramid fabrics with Fullerene C60 nanoparticles. Samples having 0.1 μm, 0.2 μm and 0.3 μm Fullerene C60 film thicknesses were produced. Morphology and tensile properties of the samples were analysed by AFM (atomic force microscopy) analysis. An uncoated fabric was used as the control sample to compare the tensile properties of the samples. Compared to the uncoated fabric, the coated fabrics showed an increase in tensile strength. As the fullerene film thickness increased, a decrease in tensile properties was also observed. The decrease observed in the tensile properties for the C60 coated fabric samples might be caused by the coarser particles accumulating on the fabric surface as the thickness increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.