Abstract

High-density linkage maps provide powerful tools for studying the genetic basis of ecologically relevant adaptations and the genomic scope of introgression. We backcrossed an F(1) hybrid male Papilio glaucus/Papilio canadensis tiger swallowtail butterfly to a pure P. glaucus female and constructed amplified fragment length polymorphism linkage maps from the progeny. The paternal map contains 309 markers distributed among 29 linkage groups, with a corrected map distance of 1167 cM (logarithm of the odds [LOD] = 4.0). The average linkage group contained 10.65 +/- 4.85 markers separated by 32.7 +/- 3.8 cM, with statistically significant clustering. The paternal hybrid map had 18.65% more markers than the maternal P. glaucus map, which provides a rough estimate of the extent of genetic differentiation between the species. The maternal map contains 253 markers among 28 linkage groups, without the X and Y chromosomes. Segregation distortion from expected Mendelian ratios was observed for 94/1096 scored loci (8.6%, P < 0.05). The X chromosome map includes 7 markers spanning 29.3 cM (LOD = 3.0). These naturally hybridizing, female heterogametic species are used to study important questions in the maintenance of species boundaries, sex chromosome introgression, sex-limited mimicry, and host plant use. The map will facilitate research into the physiological, ecological, and evolutionary genetics of these phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call